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Partee’s Conjecture

Barbara H. Partee, “Do We Need Two Basic Types?” (2006)

Single-Type Hypothesis

The distinction between entities and propositions is inessential

for the construction of a rich linguistic ontology.

All object-types can be bootstrapped from a single basic type.

Montague Semantics

Basic types: e (for entities) and �s, t� (for propositions);
Derived types: �e, �s, t�� (for properties), �e, �e, �s, t��� (relations).

Single-Type Semantics (Partee)

Basic type: q (for entities and propositions);

Derived types: �q, q� (for properties), �q, �q, q�� (for relations).
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Partee’s Motivation

Andrew Carstairs-McCarthy, The Origins of Complex Language (1999)

Single-Category Hypothesis

The distinction between NPs and sentences is inessential for
the generation of complex modern languages.

All categories can be constructed from a single basic category.

Categorial Syntax

Basic categories: NP (for noun phrases) and S (for sentences);

Derived categories: NP\S, (NP\S)/NP (for (in-)transitive verbs).

Monocategoric Syntax

Basic category: X (for noun phrases and sentences);

Derived categories: X\X, (X\X)/X (for (in-)transitive verbs).
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Arguments for the Single-Category Hypothesis

1. Evolutionary linguistics The NP/S-distinction is a contingent

property of modern grammar.

2. Nominalization Many sentences can be converted into NPs

(cf. Carstairs-McCarthy’s ‘Nominalized English’).

3. Language acquisition The function of NPs is often ambiguous

bw reference and assertion (Snedeker et al., 2007).

Arguments 2, 3 have direct counterparts in semantics.

Especially, the construction of a single-base syntax for NL

can be paralleled on the level of semantics.

Objective Define such a semantics!
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The Plan

1 Single-Type Semantics
Survey the objects in our domains.
Describe their interrelations.

2 Linguistic Application
Show that single-type semantics models the PTQ-fragment.

3 Wrap-Up
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Objects

Single-Type Objects

Basic and Derived Objects

Let A := De be the domain of entities.

Individuals Filters (or ideals) in P(A)

Propositions Filters (or ideals) in P(A)

Worlds Filters (or ideals) in P(A)





basic

Individual Concepts Fct’s from worlds to individuals

Proposit’l Concepts Fct’s from worlds to proposit’s

Properties All fct’s in the domain hierarchy





derived
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Objects

Single-Type Objects: Individuals

Entities and propositions are unsuitable single-type domains:

Entities (type e) lack an algebraic structure;

Propositions (type �s, t�) cannot represent entities.

We adopt basic sets of sets of entities in D��e,t�,t� := P2(A):

John := {is self-identical, is a man}
Mary := {is self-identical, is a woman}

We interpret connectives via set-theoretic operations:

�John and Mary � := John ∩Mary = {is self-identical}
�John or Mary � := John ∪Mary = {is self-identical, . . . }

�not John � := John� = {is a woman}
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Objects

Single-Type Objects: Propositions

We identify individuals with filters in P(A): (Landman)

Individuals are closed under finite intersection:

John := {is self-identical, is a man}
=⇒ John := {is self-identical ∩ is a man}

Individuals are closed under entailment:

(is self-identical ∩ is a man) ⊆ is self-identical

=⇒ John := {X | is self-identical ∩ is a man ⊆ X}

Trivially true propositions assert a property’s membership in a
filter:

{X | is self-identical ∩ is a man ⊆ X} ∩ {is a man}

Informative propositions constitute proper filter extensions:

Johnnew := {X | is self-identical ∩ is a man ∩ runs ⊆ X}
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Objects

Single-Type Objects: Properties

Property attribution := Filter extension

We interpret predicates as functions from filters to filters.

A filter in the function’s domain may not be more informative
than the filter from its range:

�runs� : John → Johnnew

s.t. John ⊆ Johnnew.

Relations have a similar representation:

�loves� : �John,Mary� → �Johnnew,Marynew�

where Johnnew := John ∩ {loves Mary},
Marynew := Mary ∩ {is loved by John}.
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Objects

Single-Type Objects: Individual Concepts

To enable proper filter extensions, we associate individual constants

with families of filters in P(A):

1 Interpret individual constants as individual concepts,

i.e. functions f : P2(A) → P2(A);

2 Apply individual concepts to different worlds in P2(A);

3 Obtain different world-specific individuals.

=⇒ We have two sorts of basic-type objects: individuals, worlds

Worlds will always be at least as informative as their individuals:
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Relations

Single-Type Objects: Example

Let w := {X | is self-identical ∩ is a man ⊆ X}, where
is self-identical := {John,Mary, the Moon},

is a man := {John},
is not a man := {Mary}.

Then, since

iiiiiiiiiiiiiii{is self-identical} ⊆ John(w),

{is a man} ⊆ John(w),

=⇒ John(w) = w = {X | is self-identical ∩ is a man ⊆ X}

But, since {is a man} � the Moon(w),

{is not a man} � the Moon(w),

=⇒ the Moon(w) �= wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Relations

Single-Type Objects: Partiality

We need to separate a constant’s denotation and complement:

1 Only thus can we account for truth-value gaps.

2 Only thus can we enable proper filter extensions.

Implementation Remove LEM from the axioms of our algebra:

Weaken the structure on single-type domains;

Split the interpretation and assignment functions;

Partialize the algebraic operations.
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Relations

Partial Truth

Single-type objects are def’d by their properties & privations:

John :=
�
John+, John−

�
, with

John+ The set of properties John is known to have;

John− The set of properties John is known to lack.

We split worlds into a denotation- and a complement-world.

Truth at a world is defined as an object’s inclusion in a world.

Compatibility with a world is defined as an object’s inclusion
of a world.

Both notions are double-barrelled. (Blamey, 1986)
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Worlds

In single-type semantics, possible worlds serve a triple-duty:

1 Worlds obtain families of individuals (propositions);

2 Worlds enable the evaluation of their truth value;

3 Worlds define the modal operators.

Worlds are well-defined:

Worlds are partial and consistent;

Worlds are partially ordered;

Worlds are extensional.
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Worlds and Accessibility

The accessibility relation R��q,q�,q� inherits its properties from the

partial order on Dq:

Definition (Accessibility)

Let λjλi .R ij formalize j includes the information of i . Then,

i. ∀i .R ii (Reflexivity);

ii. ∀i∀j∀k .(R ij ∧ R jk) → R ik (Transitivity).

Other properties (e.g. symmetry, euclideanness) can be

stipulated via non-logical axioms.

From R , the modal operators are standardly defined.
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Show that single-type semantics models the PTQ-fragment.

An Acid Test

Objective Define a single-type semantics for NL!

To compare our semantics’ modeling power with that of

multi-type systems, we model the PTQ-fragment. (Montague,

1973)Measure for success Our semantics’ ability to interpret all

expressions of the fragment.

We associate complex expressions with sets of syntactic

structures.

We render syntactic structures into single-type terms via

type-driven translation.
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Show that single-type semantics models the PTQ-fragment.

Conventions

We employ the following typographical conventions:

Variable TY
3
0 type TY2 type Objects

i , j q ��e, t�, t� := s worlds

z q ��e, t�, t� := e individuals

x , y �q, q� �s, e� ind. concepts

P1,P2 ��q, q�, �q, q�� �s, �e, �s, t��� FO properties

Q ���q, q�, �q, q��, �q, q�� �s, ��s, �e, �s, t���, t�� SO properties
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Show that single-type semantics models the PTQ-fragment.

Basic PTQ-Translations

Words Translation

John,Mary,Bill, . . . λi .john i , . . .
runs,walks, talks, . . . λi .run i , . . .
man,woman, unicorn λi .man i , . . .
finds, loves, . . . λQλyλi .Q(λx .find yxi), . . .
seeks λi .∀P∀x(seek xPi ↔ try x find Pi)
rapidly, allegedly, . . . λi .rapidly i , . . .
necessarily λz .∀i ((Ωi ∧ Ri) → (z → i))
in λQλPλyλi .Q(λx .in xPyi)
believes that λyλxλi .believe xy i , . . .
tries to,wishes to λPλxλi .try xPi , . . .
is λQλy .Q(λxλi .x = y i)
some, a λP2λP1λi .∃x(P2xi ∧ P1xi)
every λP2λP1λi .∀x(P2xi → P1xi)
the λP2λP1λi .∃x(∀y(P2y i ↔ y = x) ∧ P1xi)
tn vαn with α ∈ Monotype
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Show that single-type semantics models the PTQ-fragment.

More PTQ-Translations

(1) [Bill walks] walk (bill)

(2) [[a man] walks] λi∃x .man xi ∧ walk xi

(3) [John finds a unicorn] λi∃x .unicorn xi ∧ find john xi

(4) [John [seeks [a unicorn]]] λi .try john ∃x(unicorn xi ∧ find john xi)

[[a unicorn]1[John [seeks t1]]] λi .∃x(unicorn xi ∧ try john find john xi)

(5) [Bill [is Mary]] λi .bill = mary i

(6) [Bill [is a man]] λi .∃x(man xi ∧ x = bill i)

(7) [Necessarily [Bill [is Bill]]] ∀i ((Ωi ∧ Ri) → (bill = bill i → i))

(8) [Possibly [Bill [is Mary]]] ¬∀i ((Ωi ∧ Ri) → (¬bill = mary i → i))
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Wrap-Up

We have developed a single-type semantics for NL:

The domain Dq unifies individuals, propositions, and worlds.

From Dq, we can construct individual/propositional concepts,
properties, and relations.

Single-type models assign every PTQ-rendering a denotation
and complement in the partial algebra.

We have developed a single-type semantics for ‘Montague’-English:

To model larger fragments, we must define more operations
(nominalization, collectivization, grinding, . . . ).
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Thank you!
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