A Single-Type Semantics for Natural Language

Kristina Liefke

Tilburg Center for Logic and Philosophy of Science (Netherlands)

Formal Semantics and Pragmatics: Discourse, Context, and Models University of Latvia, Riga, November 19, 2010

References

Partee's Conjecture Barbara H. Partee, "Do We Need Two Basic Types?" (2006)

Single-Type Hypothesis

- The distinction between entities and propositions is inessential for the construction of a rich linguistic ontology.
- All object-types can be bootstrapped from a single basic type.

Montague Semantics

- Basic types: e (for entities) and $\langle s, t \rangle$ (for propositions);
- Derived types: $\langle e, \langle s, t \rangle \rangle$ (for properties), $\langle e, \langle e, \langle s, t \rangle \rangle \rangle$ (relations).

Single-Type Semantics

- Basic type: *q* (for entities and propositions);
- Derived types: $\langle q, q \rangle$ (for properties), $\langle q, \langle q, q \rangle \rangle$ (for relations).

Partee's Motivation

Andrew Carstairs-McCarthy, The Origins of Complex Language (1999)

Single-Category Hypothesis

- The distinction between NPs and sentences is inessential for the generation of complex modern languages.
- All categories can be constructed from a single basic category.

Categorial Syntax

- Basic categories: NP (for noun phrases) and S (for sentences);
- Derived categories: NP\S, (NP\S)/NP (for (in-)transitive verbs).

Monocategoric Syntax

- Basic category: X (for noun phrases and sentences);
- Derived categories: $X \setminus X$, $(X \setminus X)/X$ (for (in-)transitive verbs).

Arguments for the Single-Category Hypothesis

- 1. Evolutionary linguistics The NP/S-distinction is a contingent property of modern grammar.
- 2. Nominalization Many sentences can be converted into NPs (cf. Carstairs-McCarthy's 'Nominalized English').
- 3. Language acquisition The function of NPs is often ambiguous bw reference and assertion (Snedeker et al., 2007).
 - Arguments 2, 3 have direct counterparts in semantics.
 - Especially, the construction of a single-base syntax for NL can be paralleled on the level of semantics.

Objective Define such a semantics!

Semantics 0000000 Application 000000

Wrap-Up 00

References

The Plan

1 Single-Type Semantics

- Survey the objects in our domains.
- Describe their interrelations.

2 Linguistic Application

• Show that single-type semantics models the PTQ-fragment.

Semantics •0000000 Application

Wrap-Up

References

Objects

Single-Type Objects

Basic and Derived Objects

Let $\mathcal{A} := D_e$ be the domain of entities.

IndividualsFilters (or ideals) in $\mathcal{P}(\mathcal{A})$ PropositionsFilters (or ideals) in $\mathcal{P}(\mathcal{A})$ WorldsFilters (or ideals) in $\mathcal{P}(\mathcal{A})$

Individual Concepts Fct's from worlds to individuals Proposit'l Concepts Fct's from worlds to proposit's Properties All fct's in the domain hierarchy

derived

Objects

Single-Type Objects: Individuals

- Entities and propositions are unsuitable single-type domains:
 - Entities (type e) lack an algebraic structure;
 - Propositions (type $\langle s, t \rangle$) cannot represent entities.
- We adopt basic sets of sets of entities in $D_{\langle\langle e,t\rangle,t\rangle} := \mathcal{P}^2(\mathcal{A})$: John := {is self-identical, is a man}

Mary := {is self-identical, is a woman}

• We interpret connectives via set-theoretic operations:

 $\begin{bmatrix} John and Mary \end{bmatrix} := John \cap Mary = \{is self-identical\} \\ \begin{bmatrix} John or Mary \end{bmatrix} := John \cup Mary = \{is self-identical, ...\} \\ \begin{bmatrix} not John \end{bmatrix} := John' = \{is a woman\} \\ \end{bmatrix}$

Semantics ○○●○○○○○ Application

Wrap-Up

References

Objects

Single-Type Objects: Propositions

- We identify individuals with filters in $\mathcal{P}(\mathcal{A})$:
 - Individuals are closed under finite intersection:

John := {is self-identical, is a man}

 \implies John := {is self-identical \cap is a man}

Individuals are closed under entailment:

(is self-identical \cap is a man) \subseteq is self-identical

 \implies John := {X | is self-identical \cap is a man $\subseteq X$ }

- Trivially true propositions assert a property's membership in a filter:
 {X | is self-identical ∩ is a man ⊆ X} ∩ {is a man}
- Informative propositions constitute proper filter extensions:
 John_{new} := {X | is self-identical ∩ is a man ∩ runs ⊆ X}

Semantics 000●0000 Application

Wrap-Up

Objects

Single-Type Objects: Properties

Property attribution := Filter extension

- We interpret predicates as functions from filters to filters.
- A filter in the function's domain may not be more informative than the filter from its range:

 $[\![\mathit{runs}]\!]:\mathsf{John}\to\mathsf{John}_{\mathsf{new}}$

s.t. John \subseteq John_{new}.

• Relations have a similar representation:

 $[\![\mathit{loves}]\!]: \langle \mathsf{John}, \mathsf{Mary} \rangle \to \langle \mathsf{John}_{\mathsf{new}}, \mathsf{Mary}_{\mathsf{new}} \rangle$

where $\mathsf{John}_{\mathsf{new}} := \mathsf{John} \cap \{\mathsf{loves} \; \mathsf{Mary}\},\$ $\mathsf{Mary}_{\mathsf{new}} := \mathsf{Mary} \cap \{\mathsf{is} \; \mathsf{loved} \; \mathsf{by} \; \mathsf{John}\}.$

Objects

Single-Type Objects: Individual Concepts

To enable proper filter extensions, we associate individual constants with families of filters in $\mathcal{P}(\mathcal{A})$:

- 1 Interpret individual constants as individual concepts, i.e. functions $f : \mathcal{P}^2(\mathcal{A}) \to \mathcal{P}^2(\mathcal{A})$;
- 2 Apply individual concepts to different worlds in $\mathcal{P}^2(\mathcal{A})$;
- Obtain different world-specific individuals.

 \implies We have two sorts of basic-type objects: individuals, worlds Worlds will always be at least as informative as their individuals: Semantics

Application

Wrap-Up

References

Relations

Single-Type Objects: Example

• Let $w := \{X \mid \text{is self-identical} \cap \text{is a man} \subseteq X\}$, where

- is self-identical $:= \{John, Mary, the Moon\},\$
 - is a man $:= {\mathsf{John}},$
 - is not a man $:= {Mary}.$
- Then, since

 $\begin{array}{rcl} \{ \text{is self-identical} \} &\subseteq & \operatorname{John}(w), \\ & \{ \text{is a man} \} &\subseteq & \operatorname{John}(w), \\ \implies & \operatorname{John}(w) &= & w &= & \{ X \, | \, \text{is self-identical} \, \cap \, \text{is a man} \subseteq X \} \end{array}$

• But, since {is a man} \nsubseteq the Moon(w), {is not a man} \nsubseteq the Moon(w), \implies the Moon(w) \neq w

Relations

Single-Type Objects: Partiality

We need to separate a constant's denotation and complement:

- Only thus can we account for truth-value gaps.
- Only thus can we enable proper filter extensions.

Implementation Remove LEM from the axioms of our algebra:

- Weaken the structure on single-type domains;
- Split the interpretation and assignment functions;
- Partialize the algebraic operations.

Application

Wrap-Up

References

Relations

Partial Truth

- Single-type objects are def'd by their properties & privations:
 - John := $\langle John^+, John^- \rangle$, with John⁺ The set of properties John is known to have; John⁻ The set of properties John is known to lack.
- We split worlds into a denotation- and a complement-world.
- Truth at a world is defined as an object's inclusion in a world.
- Compatibility with a world is defined as an object's inclusion of a world.
- Both notions are double-barrelled.

Semantics

Application ●○○○○○

Worlds

In single-type semantics, possible worlds serve a triple-duty:

- Worlds obtain families of individuals (propositions);
- Worlds enable the evaluation of their truth value;
- Worlds define the modal operators.

Worlds are well-defined:

- Worlds are partial and consistent;
- Worlds are partially ordered;
- Worlds are extensional.

Application ○●○○○○

Worlds and Accessibility

The accessibility relation $R_{\langle\langle q,q\rangle,q\rangle}$ inherits its properties from the partial order on D_q :

Definition (Accessibility)

Let $\lambda j \lambda i$. *R* ij formalize j includes the information of i. Then,

- i. $\forall i.R \, ii$ (Reflexivity);
- ii. $\forall i \forall j \forall k. (R ij \land R jk) \rightarrow R ik$ (Transitivity).
- Other properties (e.g. symmetry, euclideanness) can be stipulated via non-logical axioms.
- From R, the modal operators are standardly defined.

ConjectureSemanticsApplicationWrap-UpReferences0000000000000000000000000

Show that single-type semantics models the PTQ-fragment.

An Acid Test

Objective Define a single-type semantics for NL!

- To compare our semantics' modeling power with that of multi-type systems, we model the PTQ-fragment.
- Measure for success Our semantics' ability to interpret all expressions of the fragment.
- We associate complex expressions with sets of syntactic structures.
- We render syntactic structures into single-type terms via type-driven translation.

Conjecture	Semantics	Application	Wrap-Up
0000	0000000	$\bigcirc \bigcirc $	00

Show that single-type semantics models the PTQ-fragment.

Conventions

We employ the following typographical conventions:

Variable	TY ₀ ³ type	TY ₂ type	Objects
i,j	q	$\langle\langle e,t angle,t angle:=s$	worlds
Z	q	$\langle\langle e,t angle,t angle:=e$	individuals
x, y	$\langle oldsymbol{q},oldsymbol{q} angle$	$\langle s, e angle$	ind. concepts
P_{1}, P_{2}	$\langle\langle m{q},m{q} angle,\langlem{q},m{q} angle angle$	$\langle s, \langle e, \langle s, t angle angle$	FO properties
Q (($\langle \langle \boldsymbol{q}, \boldsymbol{q} \rangle, \langle \boldsymbol{q}, \boldsymbol{q} \rangle \rangle, \langle \boldsymbol{q}, \boldsymbol{q} \rangle angle$	$\langle s, \langle \langle s, \langle e, \langle s, t \rangle \rangle \rangle, t \rangle angle$	SO properties

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽へ⊙

Application 000000

Show that single-type semantics models the PTQ-fragment.

Basic PTQ-Translations

Words	Translation
John, Mary, Bill,	λi.john i,
runs, walks, talks,	$\lambda i.run i, \ldots$
man, woman, unicorn	$\lambda i.man i, \ldots$
finds, loves,	$\lambda Q \lambda y \lambda i Q (\lambda x. find y x i), \dots$
seeks	$\lambda i. \forall P \forall x (seek \ xPi \leftrightarrow try \ x \ find \ Pi)$
rapidly, allegedly,	λi .rapidly i, \ldots
necessarily	$\lambda z. \forall i ((\Omega i \land Ri) \rightarrow (z \rightarrow i))$
in	$\lambda Q \lambda P \lambda y \lambda i. Q(\lambda x. in x P y i)$
believes that	$\lambda y \lambda x \lambda i$. believe xy i ,
tries to, wishes to	$\lambda P \lambda x \lambda i$.try xPi,
is	$\lambda Q \lambda y. Q(\lambda x \lambda i. x = yi)$
some, a	$\lambda P_2 \lambda P_1 \lambda i \exists x (P_2 x i \land P_1 x i)$
every	$\lambda P_2 \lambda P_1 \lambda i. \forall x (P_2 x i \rightarrow P_1 x i)$
the	$\lambda P_2 \lambda P_1 \lambda i \exists x (\forall y (P_2 y i \leftrightarrow y = x) \land P_1 x i)$
t _n	v_{α_n} with $\alpha \in Monotype$

Application ○○○○○●

Show that single-type semantics models the PTQ-fragment.

More PTQ-Translations

- (1) [Bill walks]
- (2) [[a man] walks]
- (3) [John finds a unicorn]
- (4) [John [seeks [a unicorn]]] [[a unicorn]¹[John [seeks t_1]]]
- (5) [Bill [is Mary]]
- (6) [Bill [is a man]]
- (7) [Necessarily [Bill [is Bill]]]
- (8) [Possibly [Bill [is Mary]]]

walk (bill) $\lambda i \exists x. man x i \land walk x i$ $\lambda i \exists x. unicorn \ xi \land find \ john \ xi$ $\lambda i.try john \exists x (unicorn xi \land find john xi)$ $\lambda i \exists x (unicorn xi \land try john find john xi)$ $\lambda i.bill = mary i$ $\lambda i \exists x (man xi \land x = bill i)$ $\forall i ((\Omega i \land Ri) \rightarrow (bill = bill i \rightarrow i))$ $\neg \forall i ((\Omega i \land Ri) \rightarrow (\neg bill = mary i \rightarrow i))$

Wrap-Up ●○

Wrap-Up

We have developed a single-type semantics for NL:

- The domain D_q unifies individuals, propositions, and worlds.
- From D_q, we can construct individual/propositional concepts, properties, and relations.
- Single-type models assign every PTQ-rendering a denotation and complement in the partial algebra.

We have developed a single-type semantics for 'Montague'-English:

• To model larger fragments, we must define more operations (nominalization, collectivization, grinding, ...).

Semantics

Application

Wrap-Up ○● References

Thank you!

・ロ> < 団> < 三> < 三> < 三・< 三・< へへ

ConjectureSemanticsApplicationWrap-Up000000000000000000000

References

Blamey, Stephen. 1986. *Partial Logic*, Handbook of Philosophical Logic (D.M. Gabbay and F. Guenthner, eds.), Vol. 5, Kluwer Academic Publishers, 2002.

Carstairs-McCarthy, Andrew. 1999. *The Origins of Complex Language: An Inquiry into the Evolutionary Beginnings of Sentences, Syllables, and Truth,* Oxford University Press, Oxford and New York.

Cheney, Dorothy L. and Robert M. Seyfarth. 1990. *How Monkeys See the World*: *Inside the Mind of Another Species*, University of Chicago Press, Chicago.

Landman, Fred. *Pegs and Alecs*, Towards a Theory of Information: The Status of Partial Objects in Semantics, Foris Publications, Dordrecht, 1986.

Montague, Richard. 1973. *The Proper Treatment of Quantification in Ordinary English*, Formal Philosophy, Yale UP, New Haven and London, 1976.

Partee, Barbara H. *Do We Need Two Basic Types?*, Snippets: Special Issue in Honor of Manfred Krifka (S. Beck and H. Gärtner, eds.), Vol. 20, Berlin, 2009.

Snedeker, Jesse, Joy Geren, and Carissa L. Shafto. 2007. *Starting Over*: *International Adoption as a Natural Experiment in Language Development*, Psychological Science **18/1**, 79–87.

References